Calculations on Critical Points under Gaussian Blurring
نویسندگان
چکیده
The behaviour of critical points of Gaussian scale-space images is mainly described by their creation and annihilation. In existing literature these events are determined in so-called canonical coordinates. A description in a user-defined Cartesian coordinate system is stated, as well as the results of a straightforward implementation. The location of a catastrophe can be predicted with subpixel accuracy. An example of an annihilation is given. Also an upper bound is derived for the area where critical points can be created. Experimental data of an MR, a CT, and an artificial noise image satisfy this result.
منابع مشابه
Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring
In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of parameter-driven blurring. During this evolution two different types of special points are encountered, the so-called scale space saddles and the catastrophe points, the latter describing the pairwise annihilation and creation of critical poi...
متن کاملOn the Behaviour of Critical Points under Gaussian Blurring
The level of detail of an image can be expressed in terms of its topology, i.e. the distribution of Morse critical points and their types, which in turn is governed by resolution. We study the behaviour of critical points as a function of resolution for Gaussian scale-space images using catastrophe theory. Unlike existing literature, in which one employs local, so-called canonical coordinates f...
متن کاملOn Scale Space Critical Curves And Catastrophe Points
Investigating the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of blurring. We show how the mathematical framework of catastrophe theory can be used to describe the various different types of annihilations and creations of pairs of critical points. This knowledge can be exploited in the use of the scale space hierarc...
متن کاملOn the creations of critical points in scale space with applications to medical image analysis
In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of spatial critical points under the influence of blurring. We show how the mathematical framework of catastrophe theory can be used to describe the various different types of annihilations and creations of pairs of spatial critical points and how this knowledge can be exploited in f...
متن کاملOn the Behavior of Spatial Critical Points under Gaussian Blurring. A Folklore Theorem and Scale-Space Constraints
The main theorem we present is a version of a “Folklore Theorem” from scale-space theory for nonnegative compactly supported functions from R to R. The theorem states that, if we take the scale in scale-space sufficiently large, the Gaussian-blurred function has only one spatial critical extremum, a maximum, and no other critical points. Two other interesting results concerning nonnegative comp...
متن کامل